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Studies on Orientation Phenomena by Fiber Formation from Polymer Mdts. 
Part 11. Theoretical Considerations 
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In the previous paper’ it was shown that the main 
factors determining the orientation of macromole- 
cules through fiber formation from polymer melt 
are the axial velocity gradient d V / d l  and the relaxa- 
tion rate as related to cooling conditions. From 
those results as well as from the x-ray investiga- 
tions, it should be supposed that the mechanism of 
orientation through fiber-spinning is analogous to 
the streaming orientation observed in the flow of 
polymer solutions through capillaries or in a Cou- 
ette apparatus. The conditions occurring in the 
both processes however are different in principle. 
In the present paper, those differences will be dis- 
cussed and the equations derived to describe the 
unstationary process of orientation for two extreme 
molecular models. 

CONDITIONS OF ORIENTING MACROMOLECULES 
BY MELT-SPINNING FIBERS 

Velocity Field 

The existent theories of “classical” streaming 
orientation and birefringence treat the velocity 
field of a viscous liquid flowing through a capillary 
or between rotating cylinders (Couette apparatus). 
In such a field, a transverse velocity gradient 
d V / d r  exists perpendicular to flow direction. In 
the case of fiber-spinning, no transverse velocity 
gradient exists : the velocity distribution through 
the fiber cross-section is practically uniform. The 
velocity field is characterized by an axial velocity 
gradient dV/dE parallel to the direction of flow. 
The scheme of both velocity fields is shown in 
Figure 1. 

The character of the velocity field determines the 
way in which asymmetrical molecules rotate in a 
flowing liquid. In the field with a transverse 
velocity gradient (Fig. la), the rotation rate de- 
pends upon the shape of the molecules and the 
velocity gradient, whereas in the second case (Fig. 

lb), the rate of rotation is dependent on the veloc- 
ity gradient alone. According to the model of W. 
Kuhn,2 the angular velocity of a rotational ellipsoid 
with axial ratio p = a /b  in the transverse-gradient 
field amounts to: 

&/dt = -[GJ(l + p-”)I(sin24 + P - ~  cos2$) 

and in the parallel-gradient field to: 
(14 

(1b) d+/dt = -- (6142) sin 24 

where 

GI 
GI, 
d$/dt = angular velocity of rotation. 

For the axial ratio p = 1 (a sphere), in both 
cases the rotation velocity becomes constant. For 
the first type of field, it amounts to -G,/2, while 
for the second type, rotation wholly disappears: 
d4/d t  = 0. The relations between rotation veloci- 
ties and angles 4 are demonstrated in Figures 2 and 
3. From these figures, it is apparent that in the 
transverse-gradient field the rotation is always in 
the same direction and that the rotational velocity 
never falls to 0, but only tends to 0 a t  4 = 0 for 
high values of p .  

In fiber-spinning the velocity field has an axial 
gradient, and the velocity of rotation changes sign 
and reaches 0 at 4 = 0 for any p > 1. Conse- 
quently, the position of a macromolecule parallel 
to the fiber axis is characterized by stable equilib- 
rium. In the transverse-gradient field, the axial 
position of a single molecule is metastable and only 
a statistical equilibrium for the system may be ob- 
tained. The least deviation from an axial position 
4 = 0. (e.g., owing to Brownian motion), is always 
followed, in the parallel-gradient field, by a return 
to the equilibrium’ (axial) position. In the first 
type of field, however, such a deviation may be fol- 

= d V / d r  = transversal velocity gradient 
= d V / d l  = axial velocity gradient 

24 
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Fig. 1. Scheme of velocity fields: (A) field with transverse velocity gradient, (B) field with axial velocity gradient. 

lowed either by a return or by a further rotation of 
the macromolecule. 

Those differences are probably responsible for the 
differences between the rheological behavior of 
macromolecular liquids flowing through capillaries 
and those being spun into fibers. This seems to be 
confirmed by results of spinnability investigations 
carried out on polymer solutions by Nitschmann 
and S ~ h r a d e . ~  

Molecular State 

In  the theories of streaming orientation and bire- 
fringence, the diluted polymer solutions have USU- 
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Fig. 2. Angular dependence of rotation velocity of ellipsoid 
in the field with transverse gradient,. 

d+/dt = - GI 1141 + p-?]  (sin2 + + p - 2  cos2 +) 

ally been considered to contain independent, 
single molecules free to move in the low-molecular- 
weight, solvent medium. In the case of fiber- 
formation from molten polymer, this assumption 
is no longer valid. The medium in which flowing 
proceeds consists of macromolecules alone, and 
the relatively small distances between them 
create very convenient conditions for macromolecu- 
lar interactions, especially of long chains (tangle) 
and strongly polar polymers (hydrogen bonds, short 
range order). Those factors should be taken into 
account in exact interpretations of investigations 
carried out on polymers of different molecular 
structures. 

t 
Fig. 3. Angular dependence of rotation velocity of ellipsoid 

in the field with axial gradient. 

d+/dt = - G,,/2 (sin 2+) 
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Time Effects 

In  diluted or even moderately concentrated solu- 
tions of polymers which were objects of previous 
studies on streaming orientation, the rate of dif- 
fusion is so high that an equilibrium is reached al- 
most instantly and time effects may be neglected. 
For that reason, the theories of streaming orienta- 
tion regarded only stationary processes. 

For molten polymers, in which viscosities are 
many orders higher than in solutions, time effects 
must be taken into account. An additional com- 
plicatingfactor is the variation of velocity gradients 
and diffusion rates with time, resulting from an in- 
crease of viscosity during cooling and solidification 
of polymer melt. Thus the ultimate degree of 
orientation is the result of simultaneous variation 
of velocity gradients and relaxation rates over the 
time t .  In  the further sections of this paper, the 
differential equations describing an unstationary 
orientation process will be derived for two extreme 
molecular models : rigid prolate ellipsoids and 
flexible, coiled chains. 

DIFFERENTIAL EQUATIONS OF ORIENTATION 

Model I. Rigid Ellipsoids 

The model considered is identical with that de- 
scribed by Boeder4 and W. Kuhn2 in papers regard- 
ing dispersions of rodlike particles. 

The velocity field in the fiber-formation melt 
stream is given by equations : 

V = V,.i ( 2 4  

dV, /dx  = GI1 (2b) 

A prolate rotational ellipsoid of length I 
undergoes rotation under the influence of the dif- 
ference between the velocities a t  its two ends (Fig. 
4). 

For a small length of the ellipsoid, the velocity dif- 
ference may be written: 

AV E G I I A X  = G I $  cos (b 

w = d+/dt = - I/*GII sin 24 

(3) 

(4) 

Hence, the angular velocity of rotation is: 

The orientation of rigid particles is described by a 
distribution function : 

A N  
p(4) = lim - 

A-0 A(b 

where N is the number of particles which lie in the 
angle interval l(b,(b + A41. The increase of func- 

Fig. 4. Model I, rigid e!lipsoid. 

tion p in the time interval dt caused by an a.ction of 
the velocity field amounts to: 

(bp/at) G = - (b/d(b) (PW) (5) 

Simultaneously, a disorientation due to diffusion 
proceeds according to  the equation : 

( W W D  = D,(b2p/W) (6) 
where D, = rotational diffusion rate constant. 

The continuity flow equation has the form: 

W d t  = - (b /M)(W)  + D , ( W W )  (7) 

For our considerations, the full form of eq. 7 for 
dynamic process will be of interest when para- 
meters GI1 and D, are allowed to vary in time. 
Putting the velocity of rotation (eq. 4) into eq. 7, 
the differential equation of orientation of rigid par- 
ticles in the field of axial velocity gradient is ob- 
tained : 

( W W  - Dr(t>(h2p/b(b2) - 2 Gll(t) sin 2#~(bp/b4> 

-G&) cos 24*p(t, 4)  = 0 (8) 

1 

Model 11. Flexible Coiled Chains 
According to the conception of W. and H. Kuhn5 

and J. J. H e r m a q 6  the orientation of a system of 
statistically coiled polymer chains may be de- 
scribed by the density distribution function of free 
chain ends : 

F(z, y, x )  = lim ( N / A V )  
A V-0 

where d V  = dx dy dz. This concept assumes that 
the other ends of the chains are fixed in the origin 
of the coordinate system (Fig. 5). 
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y/ 
Fig. 5. Model 11, flexible, coiled chain. 

There are three factors which tend to change the 

a. the velocity field with an axial velocity 

b. the diffusion with translational rate con- 

c. the statistical reactionary force R. 

position of free chain end: 

gradient Gll 

stant Dt 

The density of stream of free chain ends amounts 
to : 
regarding to velocity gradient: 

jG = FV = FGllx (94  

j, = Dt grad F (9b) 

j, = FRDJkT (9c) 

regarding to diffusion: 

regarding to reactionary force : 

For the statistically coiled chains the force R, ac- 
cording to Kuhn and Griin,’ may be calculated as 
an inverse Langevin function of the ratio (end-to- 
end distance h: x-ray length of extended chain 
NA) ,  or: 

R = (LT/A)L-’[h/NA] (10) 
For small extensions (h  << NA) ,  the following ap- 
proximation is sufficient: 

R g kT3h/NA2 (W 
The stream density jR ,  after substituting R from 
eq. 10, amounts to: 

and using approximation (loa) : 

where b2 = 3/NA2 is a constant dependent on the 
statistical segment length A and the number of 
segments N in the polymer chain. 

The flow continuity equation: 

dF/& + div(VF - Dt grad F 

- P2DtFh) = 0 (12) 

with all constituents written out has the form: 

(dF/dt) - DtV2F + (GI1 - P2Dt)x(dF/dx) - 

P2Dt [ y ( b F / a y )  + 4 a F / W  1 
+ (GI[ - 3b2Dt)F = 0 (12a) 

Because of the axial fiber symmetry, it is more con- 
venient to apply the cylindrical coordinates x ,  r, 
6 in which: 

x = x  
r = (y2 + 22)”Z 

6 = arc tan (y/x) 

Considering the axial symmetry conditions : 

bF/dS = b2F/bG2 = 0 

the orientation equation written in Cartesian co- 
ordinates x ,  r (the coordinate 6 has been eliminated) 
is obtained: 

(12b) 

For the interpretation of physical properties of the 
system of oriented chains, the further transforma- 
tion of eq. (12b) into polar coordinates h, 4 is neces- 
sary. Also, these coordinates have physical sense: 
h is the chain end-to-end distance and 4 an angle 
formed by the vector h with flow direction (fiber 
axis). The orientation equation may be written 
in the final form: 

bF d2F 
- - Dt [ah. + 
at g] 

h(G1, C O S ~  4 - p2DJ - - 

- [GII sin cp cos 4 + Dt ‘$1 
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Equations (8) and (13) are too complicated to be 
solved for their general solutions. The numerical 
solutions for particular cases and the discussion of 
such results are separate problems. The purpose 
of the present work is simply the mathematical 
formulation of the orientation. From the derived 
equations, it is apparent that the orientation is a 
complicated function of molecular parametere, 
velocity gradient, and diffusion rate, as well as the 
time variations of those factors. 

COEFFICIENT OF FIBER ORIENTATION 

Functions F(h, +) and p(+) describe a distribu- 
tion of end-to-end distances and a distribution of 
directions in space of chains or rigid ellipsoids, 
respectively. For the calculation of anisotropic 
properties of the whole fiber, the introduction of a 
new parameter related to orientation is necessary, a 
parameter characterizing quantitatively the aniso- 
tropy of a macromolecular system. Such a 
parameter is called a coefficient of orientation. 

The coefficient of axial (fiber) orientation has 
been defined in different ways by various authors. 
The following definition seems to be the most cor- 
rect one : 

“The coefficient of axial orientation is a ratio of 
the resultant polarization anisotropy of a given 
fibrous system to the theoretical polarization aniso- 
tropy of the system consisting of ideally extended 
and axially parallel macromolecules, where the add. 
ing-up of constituent polarization anisotropies of 
the individual structural elements is carried out 
geometrically, exclusively, neglecting the possible 
changes of internal field.” 

The last restriction has an important methodical 
implication. The coefficient of orientation is a 
geometrical term and as such cannot depend on any 
physical factors. The known definition of the coef- 
ficient of fiber orientation after P. H. Hermanss 
was based upon birefringence and density. That 
definition was often criticized with regard to its 
neglect of changes in the internal field caused by 
orientation and, consequently, of the related de- 
viations of the observed from the expected bire- 
fringence. It is implied that this coefficient con- 
tains no physical factors (e.g., birefringence), and 
that the internal field does not affect the value. 
Further, it will be shown that the definition pro- 
posed in the present paper is free of such incorrect- 
nesses; orientation coefficients derived below de- 
pend exclusively upon shape, dimensions, and 
arrangement of macromolecules in the fiber. 

Model I. Rigid Ellipsoids 

In the system of rigid ellipsoids each of which ex- 
hibits an anisotropy of polarization (ul - u2), the 
coefficient of orientation depends only upon the 
spatial distribution of the ellipsoids’ directions. 

To describe such a distribution, a special con- 
struction called “Polanyi’s sphere” is commonly 
used. It is a spherical surface on which all direc- 
tions are projected. All directions pass simultane- 
ously through the center of sphere (Fig. 6). The 
density of intersection points on the surface char- 
acterizes the spatial distribution of directions. In 
our case, this distribution has an axial symmetry. 

It may be seen from Figure 6 that the number of 
ellipsoids whose axes form with the fiber axis an 
angle lying in the interval (+, + + d+) amounts to: 

d G ,  + + d+ = 2nRp(+) sin cb d+ (14) 

The constituent of fiber polarization anisotropy 
which proceeds from a single particle of anisotropy 
(u1 - u2) inclined to fiber axis at  an angle + 
(q - al)+ = (UI - u2) [ l  - (3/2) sin2 41 (15) 

The mean polarization anisotropy of the whole fiber 
consisting of rigid particles distributed according 
to the function p ( + )  amounts to: 

(“11 - = S(all - a.J+dG/SdG (16) 

Substituting dG from eq. (14) and (a11 - a*)+ 

.- 

I 
Fig. 6. Polnnyi’s sphero. 
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from eq. (15) into eq. (16)) we obtain the coefficient 
of orientation f: 

Model II. Flexible, Coiled Chains 

A polarization anisotropy in the direction of vec- 
tor h of the single macromolecular chain consisting 
of N statistical segments, each having an anis- 
tropy of polarization (aI - az), amounts to, 
according to Kuhn and Grun,’ 

(TI - YZ) = N ( w  - az) 1 - 3h/NA ] (18) [ L-’(h/NA) 

For small extensions (h << N A ) ,  the following ap- 
proximation may be used : 

(71 - YZ) ( 3 / 5 ) ( w  - 4 ( h 2 / N A 2 )  (18a) 

The mean polarization anisotropy of a fiber de- 
pends on the degree of chain extension as well as 
on the angular distribution of the directions of 
vector h. The constituent of fiber polarization 
anisotropy proceeding from the chains of end-to- 
end distance h directed a t  an angle 9 to the fiber 
axis is: 

(all - a d h , ,  = (71 - Yz) [1 - (3 /2 )  sin2 41 (19) 
and, considering approximation (Ha) instead of 
(18) for (71 - YS): 

( “ 1 1  - a ~ ) h , +  (3 /5 ) (a1  - a2)(h2/NA2) 

(1 - ( 3 / 2 )  sin2 4)  (19a) 

To describe the spatial distribution of free chain 
ends according to the function F(h, 4 ) )  a new con- 
struction has been built which in fact is a three- 
dimensional Polanyi’s sphere. The construction 
is a spherical solid; in the center of sphere, one 
end of each chain is fixed, whereas all the other 
free ends determine the density of the solid. Chain 
ends a t  an equal distance h form a spherical surface 
(Polanyi’s sphere) of radius h. The whole con- 
struction consists of an infinite number of Polanyi’s 
spheres (Fig. 7). The number of chain ends in- 
cluded in the angular interval (4, 4 + d4)  and 
length interval (h, h + dh) amounts to: 

dG,, , + d, = 2rhF(h, 4) sin 4 d4  dh 
h, h 4- dh 

Hence, the mean polarization anisotropy 
fiber is: 

(all - a d  = f f (“11 - a d h ,  + d G / f  f dG 

I 

Fig. 7. Three-dimensional Polanyi’s sphere. 

For the system of ideally oriented (4 = 0) and fully 
extended (h = N A )  chains, the anisotropy is: 

Thus the coefficient of fiber orientation is: 

(23) 
It should be noted that in the formulas (17) and 

(23) only those factors occur which are related to 
the shape and spatial arrangement of macromole- 
cules. This agrees with the postulation given in 
our definition. Those physical factors (polariza- 
tion anisotropies) used in the derivation of formu- 
las (17) and (23) have been further eliminated; so 
the orientation coefficient contains exclusively geo- 
metrical parameters. 
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THE INTERPRETATION OF SPINNING 
EXPERIMENTS 

From the theories of streaming birefringence, it 
is possible to determine the shape and deforma- 
bility of a macromolecule in solution. Besides the 
Maxwell constant, the extinction angle and the 
relation of birefringence vs. velocity gradient 
are important. For rigid, rodlike particles, where 
the birefringence is determined by an orientation 
effect alone, the last relation corresponds to the 
saturation curve. In the case of flexible, light- 
deformable coils, the increase of birefringence with 
velocity gradient is linear or even more rapid (a 
concave curve). The shape of the curve An vs. GI 
may then be a comparative measure of so-called 
“internal viscosity” and deformability of macro- 
molecules. 

It is a question, whether similar information 
about macromolecules in the molten state can be 
obtained from the relationship of birefringence vs. 
velocity difference in spinning experiments. Such 
a curve would have a form similar to that men- 
tioned above. The solution and molten state rela- 
tionships cannot, of course, be identified one with 
another, and one should take into account the spe- 
cific conditions described in the first sections of 
this paper. These conditions cause some deforma- 
tion of the curve An vs. A V .  

In the preceding paper,l it has been shown that 
as the velocity difference (and mean velocity gradi- 
ent) increase, the cooling rate increases, changing 
the viscosity and relaxation time of polymer 
stream. In this case, the birefringence is not (as 
in classical streaming orientation) determined by 
an equilibrium between the action of constant veloc- 
ity gradient and constant diffusion rate, but is a 
resultant of an action over time t of continuously 
varying velocity gradients and rates of diffusion. 

In  Figure 8, a scheme of an experimental bire- 

Fig. 8. Schematic diagram of spinning orientation. 

fringence vs. velocity difference curve for polycap- 
ronamide fiber is shown. 

Above the birefringence curve in Figure 8, the 
simultaneous changes of cooling rate are demon- 
strated (dotted line). It is apparent that an in- 
crease in spinning velocity is accompanied by an 
increase in cooling rate, and hence a decrease of 
diffusion intensity. It is characteristic that the 
birefringence curve does not pass through the origin 
of the coordinate system, but over some interval of 
velocity differences retains value 0. Such an ef- 
fect did not occur in streaming orientation experi- 
ments under isothermal conditions (“classical” 
streaming birefringence). This “anomalous” be- 
havior of fibers results from the specific conditions 
of experiment. At low spinning velocities and 
simultaneously low cooling rates, the thermal re- 
laxation is so strong that it completely eliminates 
the orienting action of the velocity field. The re- 
gion of persistent orientation is thus shifted into 
higher velocity differences. 

In spite of the above-mentioned difficulties in the 
exact interpretation of spinning experiments, it may 
be expected that the shape of the fiber birefrin- 
gence vs. velocity difference curve, obtained under 
standard conditions, will give worthwhile informa- 
tion about the behavior of macromolecules in 
fiber-spinning and about the character of macro- 
molecules in the molten state. The comparative 
investigations of various polymers will be reported 
in one of the next papers. 
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Synopsis 

The mechanism for orientation of macromolecules through 
the melt-spinning of synthetic fibers is analogous to that in 
polymer solutions flowing in capillaries or in a Couette ap- 
paratus. The differences between the two processes, with 
regard to the velocity field, molecular state, and time de- 
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pendencies, have been discussed and the differential equa- 
tions derived to describe the orientation of two extreme 
molecular models. The coefficients of orientation for 
fibers consisting of rigid particles (model I )  and flexible, 
coiled chains (model 11) have been defined. The specific 
conditions occurring in fiber-spinning experiments have 
been shown, as well as the possibility of applying such ex- 
periments to the study of the behavior of macromolecules 
in the molten state. 

R6sum6 
Le mecanisme d’orientation des macromolecules par 

filage A la fusion de fibres synth6tiques est analogue B celui 
ayant lieu au cours du passage de solutions de polymbres 
au travers de capillaires ou dam l’appareil de Couette. On 
discute la difference des processus due au gradient de vitesse, 
A 1’6tat moleculaire e t  A l’influence du temps et  on a derive 
1’6quation diffbrentielle pour decrire l’orientation de deux 
modbles moleculaires extrbmes. On a defini le coefficient 
d’orientation pour des fibres constitu6es de particules rigides 
(modble I) et  des chaines flexibles accol6es. (modhle 11) 
On a expos6 les conditions sp6cifiques dans lesquelles ont 

lieu les experiences de filage des fibres ainsi que la possi- 
bilit6 d’appliquer de telles experiences B 1’6tude du comporte- 
ment des macromol6cules A 1’6tat fondu. 

Zusammenfassung 
Der Mechanismus der Orientierung von Makromolekulen 

beim Schmelzspinnverfahren ist dem beim Fliessen von 
Polymerlosungen in Kapillaren oder im Couetteapparat 
auftretenden analog. Die Unterschiede zwischen den bei- 
den Vorgangen in bezug auf Geschwindigkeitsfeld, Mole- 
kularzustand und Zeiteffekte wurden diskutiert und Dif- 
ferentialgleichungen zur Beschreibung der Orientierung 
zweier extrem verschiedener Molekulmodelle abgeleitet. 
Es wurden Orientierungskoeffizienten fur Fasern, die aus 
starren Partikeln bestehen (Modell I )  und solche aus 
biegsamen, verknauelten Ketten (Modell 11) definiert. 
Die spezifischen Bedingungen, die bei Faserspinnversuchen 
auftreten wurden aufgezeigt und ebenso die Moglichkeit, 
solche Versuche zur Untersuchung des Verhaltens von 
Makromolekiilen im geschmolzenen Zustand anzuwenden. 

Received November 17, 1958 


